A TAXONOMIC STUDY OF THE GENUS LAURENCIA (CERAMIALES, RHODOPHYTA) FROM VIETNAM. V. LAURENCIA CONCRETA CRIBB AND L. DINHII SP. NOV.

Michio MASUDA and Kazuhiro KOGAME

Division of Biological Sciences, Graduate School of Science. Hokkaido University, Sapporo, 060 Japan
(e-mail: mmasuda(osci.hokudaiac.jp)

ABSTRACT - The red alga Laurencia concreta Cribb (Rhodomelaceac. Ceramiales), reported for the first time from Vietsam, is characterised by the protuction of two vegetative periaxial cells from cach axial segment. This in combination with other features, confirms its inclusion in the subgenus Chondrophycus. Laurencia dinhii Masuda er Kugame, sp. nov. endemic to southern Vietnam, is characterised by the following set of morphological features: 1) a basai system composed of a single disc from which a few terete to subterete axes anse: 2) the production of (wo vegetalive periaxial cells from each axial segment; 3) the presence of a palisade-like superticial cortical layer; 4) the absence of projecting superficial cortical cells: 5\} the absence of loggitudinally oriented secondary pitconnections between condiguous superficial cortical cells; fi) the absence of lenticular thickenings in the walls of medultary cells: 7) the presence of intercellular spaces between contiguous medullary cells; 8) a perpendicular arrangement of tetrasporangia, each of which is produced from the second periaxial cell in each fertile segment; 9) procarps produced from the last-formel (fouth) periaxial cell of the terminal segment of a two-celled female trichoblast; and 10) flask-shaped cystocarps.

RFSUME - Lalgue rouge Latrencia concreta Cribb (Rhodomelaceae, Ceramiales), signaléc ici pour la premiere fois au Vietnam, est caractérisée par la production de deux callules périaxiales végétatives à partir de chaque seement axiai. Combiné d̀ d'autres caractéristiques, coci confirme son inclusion dans le sous-geare Chonadrophyews. Laurencia dinhii Masuda et Kogame sp nov, endémique du Sud-Vietnam, est définie par l'ensemble des caractéristiques morphologiques suivantes: 1) un systéme basal composé d un disque unique à partir duquei sont émis des a xes à section circulaire ou sub-circulaire ; 2) la procuction de deux cellules périaxiales à parir de chaque segment axial ; 3) la présence d'une assise de cellules corticales superficielie palissadique ; 4) I'absence de cellules corticales superficicles saillantes: 5) l'absence de synapses secondaires orientécs longitudnalement entre les cellules conticales superficielles : 6) l'absence d'épaississements tenticulaires dans les parois des ceilules medullairer ; 7) la présence d'espaces intercollulaires entre les celhules médultaires contigués ; 8) unc disposition des tétrasporocystes perpendiculaire à l'axe longitudinal, chacun des tétrasporocystes étant produit à partir de la seconde cellule périaxiale de chaque scgment tertile; 9) des procarpes produits à partir de la dernićre (quatrieme) cellule périaxialc formée par le segment terminal d"un trichoblaste femelie bicellulaire ; et 10) des cystocarpes en Forme d'ampoule. (Traduit pas la Rédaction)

KEY WORDS. Ceramiales, Laurencıa concreta, Lawrencia dinhii,, Rhodomelaceae, Rtodophyta, Taxonomy, Vietnam.

INTRODUCTION

The red algal genus Laurencia (Rhodomelaccae, Ceramiales) ineludes two subgenera, Iaurencia and Chondrophycus Tokida et Saito (Saito, 1967). These subgenera were originally separated on the basis of the presence or absence of longitudinally oriented secondary pit-connections between contiguous superficial cortical cells and the tetrasporangial arrangement, whether parallel or perpendicular (Saito, 1967). However. more recent sludies of the genus have shown that these criteria do not allow the unequivocal subgethus placement of all species (Masuda et al, 1998 and references cited therein), and that the number of vegetative periaxial cells produced from each vegetative axial segment is the most consistent feature distinguishing members of Laurencia from those of Chondroplycus: four in the former and two in the latter (Nam \& Saito, 1995). Many species assignable to Chondrophycus in the sense of Saito (1967) need to have their number of periaxial cells documented in order to be confirmed as members of that subgemus. In this paper, one such species, L. concreta Cribb, and a new species, L. dinhtii, are reported from Vietnam.

MATERIALS AND METHODS

Specimens of Laurencia concreta were collected at Tam Quan (11.iii.1994, leg. T. Abe), Nui Thanh, Quang Nam-Da Nang Province, Hon Tre Island (6.iii.1992, leg. M. Masuda), Hon Rua (23.i. 1993, leg. M. Masuda), Nha Trang, Khanh Hoa Province, My Hoa (20.i. 1993, leg. M. Masuda). Ninh Hai, Ninh Thuan Province, and An Thoi (8.ii.1993, leg. M. Mastuda). Phu Quoc Island, Kien Giang Province: plants of L, dinhtit were collected at My Tuong (7.iii.1992, leg. M. Masuda), Phan Rang, and Son Hai (21. i.1993. leg M. Masuda), Ninh Phuoc, Ninh Thuan Province. Material was fixed in 10% formalin in seawater, with some being pressed as voucher herbarium specimens. Sections were made by hand using a razor blade and pith stick. They were mounted in 50% glycerol-seawater on microscope slides and stained with 0.5% (w / v) colton blue in a lactic acid/phenol/glycerol/water (1:1:1:1) sofution. Specimens are deposited in the Herbarium of the Graduate School of Science, Hokkaido University (SAP 062601-062610).

OBSERVATIONS

Laurencia concreta Cribb 1983: 116

Type locality. Fairfax Island, the Great Barrier Reef, Australia; holotype specimen in the Herbarium of Department of Botany, University of Queensland, Saint Lucia, Australia (BRIU 877.18).

Distribution. Tropical and subtropical regions in the southwestern and western Pacific: eastern Australia (Cribb, 1983), Borneo (Masuda, unpublished observations), Vietnam (Dawson, 1954, as L. pemicuiata [C. Agardh] J. Agardh; present study) and the Ryukyu Islands, Japan (Masuda, unpublished observations).

Plants grow on rocks in the lower intertidal to upper subtidal zones on open and sheltered reef flats, where they form irregular or circular, cushion-shaped clumps (Fig. 1) up to 20 cm in diameter attached at many points to substrata by primaty and secondary holdrasts. Thalli are brownish-purple and rigidly cartilaginous, but are crisp when living. Each clump is composed of densely entangled, terete to subterete (frequently angulas at branch points) axes and branches which are free at the distal portions. Closely-placed branches are usually linked by anastomoses and cannot be separated without fragmenting the thallus. Axes are branched in an irregularly spiral manner (Fig. 2) at intervals of $0.5-1.5 \mathrm{~mm}$ and at angles of $40-90^{\circ}$, but percurrent main axes are not discernible. Large branches are 2.5-3.2 mm in diameter at middle portions and 0.9-1.5 mm distally. Branches of all orders are polystichots (arranged in many rows). The majority of penultimate branches are short, $1.0-2.5 \mathrm{~mm}$ long and $0.9-1.5 \mathrm{~mm}$ in diameter and bear a few ultimate branches that are $0.5-1.0 \mathrm{~mm}$ long and $0.4-1.0 \mathrm{~mm}$ in diameter (Fig . 2).

Figs 1-3. Laurencia concreta Cribb, My Hoa, Ninh Hai, Ninh Thuan Province, Vietnam. Fig. 1. Formalin/scawater-preserved specimen (SAP 062602). Fig. 2. Distal portion of a branch. Figs 3A-C Transverse section (TS) of the upper portion of a penultmate branch (at three different focal planes), showing each axial cell (a) connected with iwo periaxial cells (p) that arise approximately 120° angles to one another.

The growing point is always immersed in an apical pit, as is typical of the genus. Each axial cell produces two periaxial cells (Figs 3A-C). Periaxial cells cut off from three, successive axial cells are arranged at 120° angles to one another (Figs 3A-C), and the periaxial-cell pairs are rotated in a $1 / 3$ spiral. This arrangement and successive, radial production of cells from each periaxial cell form the terete thallus. Superficial cortical cells are polygonal to elliptical in surface view and regularly arranged in longitudinal rows. They are $8-20 \mu \mathrm{~m}$ long by $10-24 \mu \mathrm{~m}$ wide (a length:width satio of $0.5-0.9$) in surface view in the distal portions of large branches, $14-40 \mathrm{\mu m}$ long by $10-26 \mu \mathrm{~m}$ wide (a length:width ratio of $1.0-2.5$) in the middle portions, and $12-28 \mu \mathrm{~m}$ long by $16-48 \mu \mathrm{~m}$ wide (a length:width ratio of 0.41 .0) in the proximal portions Superficial cortical cells do not project at the apices of ultimate branchlets (Fig. 4).

Figs 4-7. Lauremcia concreta Cribb. My Hoa, Ninh Hai, Ninh Thuan Province, Vietnam. Fig. 4. Longitudinal section (LS) of the uppermost portion of an ultimate branch. Fig. 5. TS of the upper portion of a penultimate branch, showing a palisade-like supertieial cortical layer. Fig. f. IS of the middle portion of a branch, showing the absence of longitudinally oriented secondary pitconnections between cuntiguous superficial cortical cells. Fig. 7. TS of the lower portion of a branch, showing the ahsence of intercellular spaces.

Superficial cortical cells are radially elongated, form a continuous palisade-like layer (Figs 4-6) and in transverse sections are $24-36 \mu \mathrm{~m}$ thick (a thickness: width ratio of $1.5-2,3$) in the distal portions of large branches and $24-50 \mu \mathrm{~m}$ thick (a thickness;width ratio of 1.2-2.9) in the middle to proximal portions. Longitudinally oriented secondary pit-connections are absent between contiguous superficial cortical cells (Fig. 6). Lenticular thickenings are also absent in the walls of medullary cells (Fig. 7), which are $80-240 \mu \mathrm{~m}$ in diameter, and have walls of $4-10 \mu \mathrm{~m}$ in thickness in the middle to proximal portions of large branches. Cortical and medullary ceils are closely packed, and intercellular spaces are absent between contiguous ceils (Fig. 7). Reproductive plants were not observed.

Laurencia dinhili sp, nov,

Plantae singulae ex axibus rectis aliquot e disco basali communi effecti constantes, destituau ramos repentes infernos adhaesionibus secundariis; thulit rectifertles σ - 11 cmalti, leres ad subteves omnino, axibus principulibus percurrentibus, lutea-cad viridi-purpurei, cartilaginei, elastici, exsiccotione dhartae udhaerentes; axes principales usque ad 1.8 .2 .3 mm diametre, ramos in modo sptruli ferentes; cellule axialis omnis cum cellulis ? periaxialibus: foveae-colliguiones secundariae longitudinaliter dispositae inter cellulas corticales superficiales contingentes absentes; celhulae corticales sumarficides in sectionibus rrans versalibus ramuli ratlatim elongatae el in sirato valiformi continuo disposifae: incrassationes lenticulures in parietibus cellularmm medullae absentes: spatia intercelhulosa inter celhulas medullosas contiguas adsunt: tetrasporangia in ramis ultimis et penultimis in ordinatione perpendiculari ad axem longitudinolem formata. unumquidque ecelhula periaxiali sacunda segmenti fertilis factum; tetrasporangia maturu $140-160$ um longa et 80 - 100 $\mu \mathrm{m}$ diametro: segmentum procarpiumferum cellwhas 4 periaxialem efferens: cystocarpia laterules in ramis, lageniformiar, $720-960$ um altu et $700-920$ um dianutro, collo elevato $120-360 \mu \mathrm{~m}$ alto; spermarangia ignota.

Individual plants consisting of several upright axes arising from a common discoid holdfast, lacking lower creeping branches with secondary attachments; fertile thalli $6-11 \mathrm{~cm}$ high, terete to subterete throughout, with percurrent main axes, yellowishto greenish-purple cartilaginous, elastic, adhering to paper on drying; main axes up to $1.8-2.3 \mathrm{~nm}$ in diameter, bearing branches in a spiral manner; each axial cell with 2 periaxial eells: longitudinally oriented secondary pit-connections absent between contjguous superficial cortical cells; superficial cortical cells in transverse sections of branchlets elongated radially and arranged in a continuous palisade-like layer; lenticular thickenings absent in the wails of medullary cells; intercellular spaces present between contiguous medullary cells; tetrasporangia formed in ultimate and penultimate branches in a perpendicular arrangement to the longitudisal axis, each prodiced from the second periaxial cell of fertile segment; mature tetrasporangia. $140-160 \mu \mathrm{~m}$ long and $80-100 \mu \mathrm{~m}$ in diameter; procarp-bearing segment producing four periaxial cells; cystocarps lateral on branches, flask-shaped, $720-960 \mu \mathrm{~m}$ high and $700-920 \mu \mathrm{~m}$ in diameter, with elevated neck 120 $360 \mu \mathrm{~m}$ high, spermatangia unknown.
Holotype and type locality. Cystocarpic plant deposited in SAP (062606) (Fig. 8), collected by M. Masuda on 7 March 1992 at My Tuong, Phan Rang, Ninh Thuan Province, Vietnam.
Disiribution. Endemic to southern Viefnam; known from Ninh Thuan Province, facing the South China Sea.
Etymology, The specific epithel is dedicated to Dr Nguyen Muu Dinh, who is a Sernor Research Officer of the National Center for Scientific Research of Vietnam, in recognition of his many contributions to the taxonomy of marine ajgae in Viennam.

Plants grow solitarily on limestone or dead coral in the lower intertidal to upper subtidal zones on sheltered reef flats. They are $6-11 \mathrm{~cm}$ long (Fig. 8), yellowish-to greenish-purple, rigidly cartilaginous, terete to subterete throughout, and have percurrent main axes. One to seven upright axes arise from a common discoid holdfast 3.6 mm in diameter. Main axes are 1.2-2.0 mm in diameter in the lowest portions, $1.8-2.3 \mathrm{~mm}$ in the middle portions, then taper gradually upwards to $0.8-1.1 \mathrm{~mm}$ in the uppermost portions.

Many first-order branches are formed in an irregularly spiral manner 0.5-4.0 mum apart and at angles of $30-90^{\circ}$. These branches are $4-8 \mathrm{~cm}$ long on the lower to middle portions of the main axes, becoming shorter upwards. They beat progressively shorter branches of up to five orders which are also arranged in an irregularly spiral manner (Fig. 9). Ultimate branches are club-shaped or batrel-shaped, up to $600 \mu \mathrm{~m}$ long and $500-700 \mu \mathrm{~m}$ in diameter. Branches of all orders are polystichous (arranged in many rows). Adventitious branches are limited to the lower portions of the main axes.

Figs 8-:0. Laurentia dinhtie Masuda et Kogame, sp. nov, My Tuong, Phan Rang, Ninh Thuan Province, Vietnam. Fig. 8. Holotype specimen (cystocarpic, SAP 062606). Fig 9. Upper portion of a first-order branch. Figs 10A-C. TS of the upper portion of a third-order branch (at three different focal planes), showing each axjal cell (a) connected with two periaxial cells (p) that arise approximately 120° angles to one another.

The growing point is always located within an apical pit, as is typical of the genus. Each axial cell produces two peria xial cells (Figs 10A-C). Periaxial cells cut off from three, successive axial selis are arranged at 120° angles to one another (Figs 10A-C), and the periaxial-cell pairs are rotated in a $1 / 3$ spiral. This arrangement and suocessive, radial production of cells from the periaxial cells form the terete thallus. Superficial cortical cells are round, elliptical to polygonal in surface view, and regularly arranged in longitudinal rows. They are $8-16 \mu \mathrm{~m}$ long by $12-30$ um wide (a length width ratio of 0.4-1.0) in surface views of distal portions of first-order branches, $19-90 \mu \mathrm{~m}$ long by $14-50 \mu \mathrm{~m}$ wide (a length: width ratio of 0.9-2.0) in the middle portions, and $12-40 \mu \mathrm{~m}$ long by $16-92 \mu \mathrm{~m}$ wide (a length:width ratio of 0.3-1.2) in the proximal portions. Superficial cortical cells do not project at the apices of ultimate branchlets (Fig. 11).

Figs 11-14. Laurencia dinthi Masuda et Kogame, sp, nov. My Tuong, Phan Rang, Ninh Thuan Province, Vietnam. Fig. 11. LS of the uppermosi portion of a second-order banch. Fig. 12. TS of the upper portion of a third-order branch, showing a palisade-like superficial cortical layer. Fig. 13. LS of the middle portion of a first-order branch, showing the absence of longitudinally oriented secondary pit-connections between contigunus superficial cortical cells. Fig. 14. TS of the lower portion of a first-order branch, showing intercellular spaces (arrowheads) between medullary cells.

Superficial cortical cells are radially eiongated, form a continuous palisade-like layer (Fig. 12), and in transverse section are $24-30 \mu \mathrm{~m}$ thick (a thickness:width ratio of 1.2-1.9) in distal portions of first-order branches, $36-100 \mu \mathrm{~m}$ thick (a thickness:width ratio of 1.3-2.4) in the middle portions, and $26-80 \mu \mathrm{~m}$ thick (a thickness;width ratio of 1.3-2.5) in the proximal portions. Longitudinally oriented secondary pit-connections are absent between contiguous superficial cortical cells (Fig. 13), and lenticular thickenings are absent in the walls of medullary cells. Medullary cells are $80-200 \mu \mathrm{~m}$ in diameter, and have walls of $6-8 \mu \mathrm{~m}$ in thickness in the middle to proximal portions of first-order branches. Intercellular spaces are present in the medullary layer (Fig. 14).

Figs 15-18. Laurencia dimiti Masuda et Kogame. sp. nov. My Tiong. Phan Rang, Nish Thuan Province, Vietnam. Fig. 15. Upper portion of a second-order brazch bearing third-order tetrasporangial branches. Fig. 16. $£ \mathrm{~S}$ of a tetrasporangial branch, showing a perpendicular arrangemeni of the tetrasporangia. Fig. 17. LS of a tetrasporangial branch in which a young tetrasporangium (arrowhead) is being produced abaxially on an elongated, fertile periaxial cell (arrow). Fig. 18. TS of atetrasporangial branch, showing an axial cell (a) with an associated vegetative periaxial cell (p) and a fertile periaxial cell (arrowhead).

Tetrasporangia are formed in distal portions of ultimate and penultimate branches (Figs 15-16) which are $500-1200 \mu \mathrm{~m}$ long by $600-1000 \mu \mathrm{~m}$ wide. One (the second) of the two periaxial cells in each fertile segment substantially clongates towards the thallus surface (Figs 17-18) and produces an abaxial tetrasporangium (Fig. 17). Each tetrasporangium is provided with two cover cells that are distally produced by the lertile periaxial cell. Tetrasporangia mature centripetally and show a perpendicular arrangement relative to the longitudinal axis of the bearing branch almost until maturity (Fig. 16). Mature tetrasporangia are $140-160 \mu \mathrm{~m}$ long by $80-100 \mu \mathrm{~m}$ in diameter.

Female trichoblasts are formed in cup-shaped pits of ultimate branches. They are composed of two segments and produce a single procarp on their terminal scgment (Figs 19-24). The segment bears four periaxial cells, of which the last-formed functions as the supporting cell (Fig. 23) and produces a four-celled carpogonial branch and two sterile groups, lateral (first) and basal (second) (Fig. 24). Mature procarps are covered by a pericarp and each possesses a projecting trichogyne from the apical pit. Cystocarps are lateral on branches of any order. They are flask-shaped (Figs 25, 26), 720-960 $\mu \mathrm{m}$ long and $701)-920 \mu \mathrm{~m}$ wide, having extended ostiolar necks $120-360 \mu \mathrm{~m}$ in length. Spermatangial plants are unknown.

DISCUSSION

Laurencia concreta was first described by Cribb (198.3) on the basis of vegetative specimens collected from Fairfax Island, Queensland, Australia. It is characterised by the following combination of fcatures: 1) rigidly cartilaginous but crisp, interlocking, cushion-shaped thalli with attachment by holdfasta at numerous points and with closelyplaced branches becoming anastomosed; 2) the presence of numerous wart-like branches; 3) the absence of longitudinally oriented secondary pit-connections between contiguous superficial cortical cells; 4) the presence of a palisade-like surlace layer, 5) the absence of projecting superficial cortical cells; and 6) the absence of lenticular thickenings in the walls of medullary cells. Each axial cell, in addition, produces only two periaxial cells, I critical feature of the subgenus Chondrophycus (Nam \& Saito, 1995).

Laurencia coneretu is somewhat similar in gross morphology to L. papillosa (C. Agardh) Grevitle, but is distinguished by the production of numerous anastomosing branches that result in a tightly concrescent, cushion-shaped clump. However, it is virtually impossible to distinguish formalin/seawater-preserved, fragmentary specimens of L. cancreta from those of L. papillosa.

Although this is the first confirmed record of Laurencia concreta outside of Australia, its occurrence in Vietnam was suggested by Cribb (1983) on the basis of illustrations given by Dawson (1954, figs 61c, d), who identified his Nha Trang specimens as L paniculata (C. Agardh) J. Agardh. The present collection from Vietnam support Cribb's suggestion. Genuine L. paniculata, which is now known as 1 patentiramea (Montagne) Kützing (Silva ef af., 1987), does not possess cushon-fike thalli (Montagne, 1836, as Chomdriu obrusa C. Agardh var patentiramea Montagne; Yamada, 1931, pl. 3, fig. a, as L. paniculata; Athanasiadis. 1987. as L. paniculata). According to Silva et al. (1996), the correct name for both Laurencia patentiramea and L paniculata should be Laurencia glanduliferg (Kützing) Kütring. However, Saito (1985), who examined the type material and liquid-preserved specimens of L. glandudifera from the Adriatic Sea, reported the

Figs 19-24. I, aurencia dinthii Masuda of Kugame, sp. nov, My Tuong, Phan Rang, Ninh Thuan Province, Vietnam. Figs 19-23. Development of procarps on the terminal scgment of female trichoblasts (Figs 19, 20, 22, lateral view; Figs 21, 23, top view): dotted cell in Fig. 23 is an initial cell of the first (lateral) steric group: s in Fig, 23, supporting cell. Fig. 24. Procarp composed of a fout-celled carpogonial branch (dotted) and two sterile groups, lateral (1) and basal (b). Cells of the pericapp on the carpogonial branch were not depicted a axial cell: s. supporting cell.
presence of longitudina lly oriented secondary pit-connections and a parallel arrangement of its tetrasporangia. Rindi ef al. (1996) also reported these two features in their specimens of L glendutifera from Calafuria (south of Livorno) in the north-western Mediterranean. The two features are entirely different from those of the alga passing under the name

Figs 25, 26. Flask-shaped cystocarps of Laurencia dinhiii Masuda ct Kogame, sp. nov. My Tuong, Phat Rente. Ninh Thuan Province, Vietnam.
L. paniculata (Saito \& Womersley, 1974). Further critical studies are clearly necded to elucidate the taxonomic status of these species Latarncia concreta is common along the coast of southern Viefnam and has also been found in Borneo and the Ryukyu Islands, Japan (Masuda, unpublished observations), suggesting that it is probably widely distributed in the Iropical to subtropical Pacife.

Laurencia dinhii also produces two periaxial cells from each vegetative axial segment, confirming its subgeneric position within Chondrophycus (Nam \& Saito, 1995). It is further characterised by the presence of a palisade-like cortical layer and by an attachment system consisting of a single primary discoid holdfast only. Other members of the subgenus Chondrophycus with such an outer cortex and attachment system are the ten species:Laurencia corallonsis (Montagne) Howe (Yamada, 1931), L. cruciuna Harvey (Yamada, 1931; Saito \& Womersley, 1974), L. Fagellifera J. Agardh (Yamada, 1931), L. jejuna Tseng (1943). L. longicaulis Tseng (1943), L. palisada Yamada (1931), L. parsipapilla Tseng (1943), L. patentramea (Yamada, 1931, as L. paniculata), L. sucrisa Cribb (1958, 1983), and L. Iumida Saito e7 Womersley (1974).

Laurencit corallopsis and L. patentramea, which have broadly ovate (Harvey, 1853, as L. cervicomis Harvey) or conical cystocarps (Saito \& Womersley, 1974, as L. paniculata), respectively, differ from L. diwhii with the flask-shaped cystocarps. Laurencia craciata is distinguished from $L_{\text {. dinhii by its long intervals between the spreading }}^{\text {dit }}$ branches, which arise at wide angles (Yamada, 1931, pl. 5, fig. a; Saito \& Womersley, 1974. fig. 24). Laurencia flageliformis (Bargesen, 1937), L. jejuna (Tseng, 1943) and L. longicaulis (Tseng, 1943) difier from L dinhti by the presence of lenticular thickenings. Laurenciat palisada differs from L. dinhii in its branching, which is distichous in the lower to middle compressed portions and spiral in the upper terete portion (Masuda et al, 1998). Laurencia parvipapilla and L. succisa are easily separated from L. dinhii on the basis of their compressed thalli and distichous branching (Tseng, 1943; (ribb, 1958, 1983). Laurencia tumidu difiers from L. dinhit in having thick, rigid, lumid branches, very short, verrucose, tetrasporangial branches, and hemispherical cystocarps (Saito \& Womersley, 1974). Thus, L. dinhii appears to be well distinguished from all known species of Laurencia.

ACKNOWLEDGEMENTS - We are very grateful to Dr Huynh Quang Nang and Dr Nguyen Huu Dinh, National Center for Scientific Research of Vietnam, for their kind help in the field; and Dr Richard L. Moc, University of California, for his assistance with literature. This study was supported by a grant under the Monbusho International Scientific Remearch Program-Field Research (No. 04041015 to M. M.).

REFERENCES

ATHANASIADIS A., 1987 - A Survey of the Seaweeds of the Aegean Sea with Taxpnomic Studies on Species of the Tribe Anvithaymieae (Rhodophyta). Gothenburg, Published Ph.D. Thesis, University of Gothenburg, 174 p .
BORGESEN F., 1937 - Contributions to I south Indian marine algal flora. I. Journal of the Indian Botanical Society 16: 1-56.
CRIBBA.B, 1958 - Records of marine algae from south-castera Queensland-ITI. Laurencia Lamx. University Qucensland Papers, Deparment of Botany 3: 159-191.
CRIBB A.B, 1983 - Marine Algae of the Sontiern Grear Barrier Reef. Part I. Rhodophyta. Brisbane. Australian Coral Reef Society, 173 p.
DAWSON E. Y., 1954 - Marine plants in the vicinity of the Institut Océanographique de Nha Trang, Vict Nam. Pacific Science 8: 373-481.
HARVEY W.H., 1853 - Nereis Boreali-Americana. Part II. Rhodospermae. Smithsonian Contributions to Krowledge 5 (5): 1-258.
MASUDA M.. KOGAME K., ABE T. \& KAMURA S., 1998 - A morphological study of Lamencia palisada (Rhodomelaceae, Rhodophyta). Boranica Marina 41: 133-140.
MONTAGNE C., 1836 - Notice sur les plantes cryptogames récemment découvertes en France, comenant aussi lindication precise des localités de quelques espéces les plus rares de la Flore francaise. Annaies des Sciences Narkrelles, Botanique, Serie 26: 321-3.39,
NAM K.W. \& SAITO Y, 1995 - Vegetative and reproductive anatomy of some Laurncia (Ceramiales, Rhodophyta) spocies with a description of L. maris-rubrisp, nov, from the Red Sea. Pbecologia 34: 157-165.
RINDI F. PAPI I. \& CINELLI F., 1996 - New records of Ceramiales (Rhodophyta) for the noth-western Meditertanean. Cryprogamie. Algologie. 17: 223-238.
SAITO Y. 1967 - Studies on Japancse species of Laurenctio, with special reference to their comparative morphology. Memoirs of the Faculty of Fisheries, Hotkaido University. 15: 1-81.
SAITO Y., 1985 - So-called Leurencia glandulffera in Japan and L. nipponica (Rhodophyceae, Rhodomelaceae). Japariese Journol of Phycology 33: 167-171 (in Japanese),
SAITO Y, \& WOMERSLEY H.B.S., 1974 - The southera Australian species of Laurencia (Ceramiales: Rhodophytal. Australian Journal of Borany 22: 815-874.
SILVA P.C., BASSON P \& MOE R.L., 1996 - Catalogue of the benthic marine algae of the Indian Ocean. University of Callfornia Publication in Botany 79: 1-1259.
SILVA P.C., MENEZ E.G. \& MOE R.L., 1987 - Catalog of the benthic manine algae of the Philippines. Smithsonion Contributions te the Marino Sciences 27: 1-179.
TSENG C.K, 1943 - Marine algae of Hong Kong. IV. The genus Laurencia. Michigan Acadenny of Science, Arts and Lefters 28: 185-208.
YAMADA Y., 1931 - Notes on Laurencia, with special reference to the Japanese species. University of California Publications in Botany 16: 185-310.

